If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2=2
We move all terms to the left:
9p^2-(2)=0
a = 9; b = 0; c = -2;
Δ = b2-4ac
Δ = 02-4·9·(-2)
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{2}}{2*9}=\frac{0-6\sqrt{2}}{18} =-\frac{6\sqrt{2}}{18} =-\frac{\sqrt{2}}{3} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{2}}{2*9}=\frac{0+6\sqrt{2}}{18} =\frac{6\sqrt{2}}{18} =\frac{\sqrt{2}}{3} $
| 8d=9d−5 | | -9r-5=9-7r | | 1=t-10/2 | | 14x-30=2(7x-15) | | 3(g+11)=9 | | -12=6/5x | | 3p^2+p+8=0 | | 8b=9+5b | | 5y^2-6y+6=0 | | 13d−3d=20 | | 7x+9=7x | | 9/5a(a-5)=40 | | -3u=-2u-8 | | 5+r=22 | | 4y+3(-3y)=10 | | x+15)/2=13 | | -3-8(n+40)=-91 | | 5q=4q+4 | | 7(2y-8)=24 | | -3-8(n+40=-91 | | 6–3x=15+4x | | 3v^2+5v+1=0 | | 44=2x-6x | | 6r=8r+10 | | 4t^2-9t+8=0 | | 164=4(-7n-8) | | 3(3x+1)=7x | | -7j+4j=3j | | -85=6-7(x+5) | | 3x-9=7x-5+x | | 6(x-2)=5-4(x-1) | | 9(x+2)^2-3=-152 |